Software Release Management

Presented to
L orette Clement-Smith

Instructor, Communications 250
University College of the Fraser Valley

Prepared by

Wim Kerkhoff
CIS Diploma program

April 10, 2002

Transmittal Memorandum

To: Lorette Clement-Smith, Instructor
From: Wim Kerkhoff

Date: April 10, 2002

Subject: Software Release Management

Attached is my completed research report that you requested in January. My chosen
topic, Software Release Management (SRM), explains the methods involved in releasing
software in a controlled and optimized manner. While reading through the many sources
that | found in the library, | realized that most softwareis of poor quality, is produced
over budget, and israrely on time. Many people do not realize this. | am learning
practical ways of dealing with these common problems, so that | can help others mature
their devel opment processes and become more capable.

This report summarizes software version and revision numbers, release milestones,
release tools, build reproduction, and how to simultaneously develop multiple versions of
the same product.

| am grateful to my business communications class for helping to clarify the proposal and
stimulating me with new ideas. Colleagues at my employer, Merilus, and online SRM
professionals were also indispensable in providing examples of handling parallel software
development and contributing pointers to other sources.

This paper provided an opportunity for me to formally research this topic. Before |
started the course | had already started reading this intriguing topic, so that | could better
aid and contribute to development processes. | now know more about how software
engineering worksin the real world.

Editorial Memorandum

To: Peer editors

From: Wim Kerkhoff

Date: April 10, 2002

Subject: Software Release Management

Thank you for editing my paper and providing constructive feedback.

Most of your suggestions have been implemented by reworking the introduction,
conclusion, and the document styles. One of the suggestions was to left align the
headings instead of center aligned. This minor change increased the aesthetics of the page
layout.

Feedback obtained early in the writing stage a erted me to the fact that most of the
audience is not in the Computer Information Systems degree program. Because of this
reasonabl e fact, | was able to change partitions of the report, such that it would be
understandable to a greater audience. The appendices and glossary were added for the
benefit of those unfamiliar with many of the key terms discussed.

These changes have increased the readability and visual presentation of the paper. | really

appreciate the opportunity of obtaining your feedback. Being able to review and proof
your drafts also helped me recognize your writing strengths, and apply them to my paper.

Table of Contents

Transmittal Memorandum
Editoriad Memorandum
Executive Summary

Introduction
Problem
Purpose
Background
Scope
Organization
Sources and Methods

Revision and Version Numbers
Milestones and Tags

Branching and Parallel Development
Build Reconstruction

Appendices
Appendix A: CVS Change Logs
Appendix B: CVS Changes
Appendix C: Graphical CVSclients

Glossary

References

O A~ W DNMDNNRPRPRPPEPEP

10
11
12

13
15

Executive Summary

Purpose of this report

The purpose of thisreport isto investigate Software Release M anagement, and how a
software development company can efficiently produce timely releases of multiple
versions of their applications.

Software Release Management

Many software devel opment companies are not aware of the significance of
controlling, documenting, and automating software rel eases.

Most software devel opment teams are working on multiple versions of the same
application: past production releases, a version that the Quality Assuranceteamis
verifying, and a current development version for new features. However, they have poor
methods of handling the changes between these versions. For example, program fixes that
were made to the Quality Assurance release need to be merged back into the main
development tree. If not, then when a new Quality Assurance release is created, the
program bug will reappear. In addition to not being able to control changes to released
versions, many developers have problems keeping logs and audit trails of all changes.
The absence of change and version management is caused by not knowing the basics of
software configuration management and how to apply it to everyday problems.

This research shows that the proper use of aversioning system tool is required to
keep track of software revisions, versions, branches, changes, and merges of changes
between branches. Automatic build reproduction is required to produce high quality and
auditable software releases.

Recommendations
Recommendations for Software Rel ease Management include:
1. Using a configuration management tool such as CVS
2. Make effective use of branches and tags for releases
3. Create automated build scripts

Introduction

Problem
“Controlli ng source mde and development artifadsisa aiticd part of modern

software development” (Mikkelsen and Pherigo, 1997. Rarely is sftware shipped on
schedule, on budget, and with the feaures and stabili ty desired in the original
spedficdions.
Purpose

Thisreport will i nvestigate methods of controlli ng software rel eases and the
comporents. To doso, software engineering concepts will be defined, and methods of

enforced software source code control will be explored.

Background
Software Configuration Management (SCM) is primarily concerned with

managing source @de, the blue prints to software programs. In the last decade, Software
Configuration Management has received an increasing amourt of attention. This
increasing attention is due to the size, complexity, and constant change in modern

software.

A Softwarereleasesisafully constructed version d a software product whichis
ready for use by a spedfic audience. Releases include the distribution media,
documentation, and training materials. Distribution mediums include floppy diskettes,
CD-ROMs, DVDs, and Internet downloads. Releases are typically direded at end
consumers, but can aso be for demo, preview, or testing users. Software release
management describes methods of assembling the mmplete release and uniquely

identifying its comporents.

Software development commonly deds with four componrents: the software
programmers, source @de they write, the mnstructed software, and the development
environment. Development environments typically consist of the software, hardware, and

development todls required to create the software product.

Even when using Software Configuration Management, it is difficult to relesse a
quality release ontime (McCarthy, 1995. Because scheduling is harder, a devel opment
tean will have amuch better chance d releasing aquality projed ontime & alower cost.
Scope

Thisreport does nat cover the entirety of Software Configuration Management.
Instead, it deds with Software Release Management, which deds with how to
simultaneously work on multi ple versions of the same software gplicationin an efficient
manner. Isaues such as planning, development models, quality assurance, defed
management, and standards are not covered.

Organization

Software Release Management deds with four main concepts. Revision and
Version Numbers identify changesin each source @de file and the final product.

Mil estones and tags are used to create asnapshot of groups of sourcefilesat apaint in
time. Branching deds with haw to development on perall el versions of the same source
code. Any software version can be constructed at any time when buld reconstruction
scripts are used. These subtopics are interdependent, but presented separately.
Sources and Methods

Books from a university library and from the author’ s personal bookshelf were the
primary sources of information. Internet web sites, eledronic maili ng li st archives, email
communicaions with SRM professonals, and orine journals were dso vital. Online
resource canters provided indicators to useful books and industry research by others.

Revision and Version Numbers

Every filein a software management system is given arevision number. When the
fileis changed, it is automaticdly incremented. For example, with the Concurrent
Versions System (CVS), when afileisfirst added, it isassgned arevision nunber of 1.1.
Uponthe next save, it would be incremented to 12. It isnot possbleto use an arbitrary
revision number; these numbers are assgned by the source @de management tools, and

have speda meanings.

The release manager can assgn an arbitrary freeform version number to afile or
groupof files. For example, ghe could assgn “Version 8.0 to the entire goplicaion.
S/he muld then assgn “Version 8.1 to the next version d the program when it becomes
avail able. Behind the scenes, the software revision management system has its own
internal revision number, such as 1.31.A release manager isaso knovn asarelease
enginee, andisresporsible for assgning version numbers, creating buil ds, and creating
tags for the major milestones in the software product. Often, the release engineer isa
senior developer, the Quality Assurance manager, or somebody whois tasked to perform
such work.

The SCM tod ensures that the corred versions are incorporated into the system
builds (Leon, 20®@). Version management is a aiticd function d SCM and isthe basis
onwhich aher functions are built. Version management maintains the storage of multiple
intertwined versions of related files. With agood \ersion management system, any image
of these versions can be retrieved for inspedion, comparison with ancther image, or to
rebuild that version. When changes are made to a version, the SCM tod allows the

developer to define anew version.

Milestones and Tags

Because version and revision numbers are hard to remember, people involved
with software cnstruction prefer easier ways of referencing particular versions. There

are easier ways of groupng files that go into arelease (Mikkelsen and Pherigo, 1997%.

Withou the use of a software @nfiguration management system, developerstend
to crede their own solution. Typically, program comporents are stored in asingle
direaory which may in turn contain further sub diredories. When the program is
released, that diredory is badked up.If version 10 of WidgetABC isreleased, then the
C:\WidgetABC would get copied to C:\WidgetABC-1.0. Development then resumesin
the original C:\WidgetABC diredory. This method isinefficient, asit wastes disk space
by creding a dugicate of every singlefile, even though most fil es have not been

changed. To be aleto just badkup the incremental changesis better.

Most software cnfiguration management systems have away of adding atag to
file. Thistag is asciated with a particular revision d the file. For example, revision 1.7
of the file dc.txt could be tagged as “RELEASE _1.0’. At alater date, it would then be
trivial to locae and retrieve the state that abc.txt wasin when WidgetABC 1.0was
released.

In fad, tags can be gplied to any number of files. Tags applied to afile must be
unique. Thetag RELEASE_1.0can’t be alded to revision 1.9 @ abc.txt if revision 1.7is
already marked as RELEASE _1.0.

When abuild isdore using a SCM system, most release engineers will tag the
entire tree, marking which revisions were included in the build. A tag can be alded to any
revision d afile. Thisallows oneto addrevision 1.50f def.txt to RELEASE 1.1,even

though the aurrent version is newer at revision 1.7.

When the filesin the repository are tagged for milestones and mgjor builds, then it
iseasy to retrieve any filesthat are marked with a spedfied tag. Oncethe group d tagged
files has been retrieved, then abuild using those files can be done. This has many
benefits. If a aiticd data-corruption bug is discovered in WidgetABC 1.0 bu the aurrent

versionis 2.0,then thefilesfor 1.0 can be retrieved, the bugs fixed, and a patch for the
1.0 bug can be sent to those austomers that have not upgraded from version 1.0to 2.0.

Many software anstruction schedules define milestones for particular stage
pointsin the development cycle. When these milestones are reached, atag will be aeaed
in the SCM system. As development continues, it will t hen be passble to compare

against this known state to measure progress

In additionto predefined milestones, developers can of course aede any arbitrary
tag. For example, if they are fixing a problem with the source @de, they might tag the
code before @& “PRE_BUGFIX” and after as“POST_BUGFIX”.

One of Cisco’s departments, the Multi -service Switching BusinessUnit
(MSSBU), hasavery strict processfor release management (Jarvis and Hayes, 199).
Instead of milestones, they use dnedkpoints which they strictly enforce. A Vice President
must approve any deviations from the process Thisis understandable wnsidering the
size of their development team, but istooinvolved and complicaed for asmall to
medium sized team. Their four important chedkpoints must be met before any
development can continue: Projed Definition Checkpoint, Release Commit Chedkpaint,
Timeto Market First Customer Ship Chedkpoint, and Time to Volume First Customer
Ship Chedkpoaint. Respedively, these ae milestones for the beginning of development,
the end d development, the end d the quality verification cycle, and the beginning of
massproduction. Because MSBU primarily deds with computer hardware devices, they
have devel oped a highly detail ed and enforced release system.

Branching and Parallel Development

To an extent, development in the software devel opment industry can be compared
to parall el development in howse @nstruction. When bulding a house, there ae multiple
tasks that can be performed at the same. Whil e the plumber is conreding the hot water
pipes, the dedrician may be cmmpleting the wiring. While one programmer is adding a
new button to the todlbar, another programmer might be fixing a spelling mistakein a

startup window.

However, the dhanges made by one programmer may be in the same sourcefile
that another programmer is working on. In the house @nstruction example, two sub
trades may need to work in the same room. One of the two workers would be forced to
wait for the other to finish before being able to continue. Thus, thisis nat an appropriate
situation to compare parall el software development with. If abookauthor emails a wpy
of the manuscript to her editor to proofread, the editor can make changes and even
rewrite portions, whil e the aithor may be rewriti ng the same portionin preparation for
adding a anather chapter to the book.In this <enario, bdh are working on the same part
of material, but ontheir own copy. Any changes they make are naot refleaed in the other
person’s copy. At some point, somebody will have to open bah dacuments and manually

merge them.

SCM tods makeit easy to work on paral el copies of the same product. To doso,
adeveloper credes abranch of the main version. In the version management repasitory,
nathing has changed yet. Asthe developer saves his changes to the parall e copy, or
branch, they get marked in the SCM tod as belongng only to the branch. Later on, when
the programmer is confident that his changes are goodand ready for inclusionin the main

copy, he can use the merging functiondity of the SCM todl.

If changes were made to the exad same source filesin branches that are being
merged together, the dhanges may conflict. For example, Alicemay add aword into
hell o.txt. Bob, whil e working on a separate branch, might remove adiff erent word from

the same line. When Bob merges his branch bad into the main copy of hello.txt, his

change will corflict with Alic€ s change. The SCM tod will alert him to the fad. The

two programmers will need to talk urtil they agree whase change will remain.

It isimportant that all build scripts, tests, and dacumentation are kept with the
branch, and promoted to the next release & appropriate (Kit, 1995. If the build scripts

are nat synchronized, it may become impasshble to rebuild the next release.

There ae powerful software toals that can take care of merging changes between
versions (Leon, 2000. However, cae must be taken to verify that confli cts were resolved
correctly, andthat al changes were gplied to the destination fil es. The merging
mechanismsin CV S are not very robust (Spitzbarth, 200). Sometimes, even though a

merge gopeasto be succesdul, it may fail to apply some of the changes.

Build Reconstruction

Not al software requires compili ng, that is, converting human edited and readable
text filesinto ores and zeros that the computer can understand (Mikkel sen and Pherigo,
1997). Sometimes, construction d abuild requires combining multiple filesinto a
combined file. In the case of aweb site, bulding might involve adding acommon header
and footer to the bottom of every page before publishing it. A build script contains the
commands that are necessary to assemble the pieces into afinal product. By running this

build script, the final product is assembled.

In an email conversation, Spitzbarth (2001) describes how he has set up the build
and kranch system at his company. Every night, a new build of the softwareis
automaticdly created. A predse name such as “projed7_Build5 Marl3 2002 enables
anybody to seethat the build was from the night of March 13, 2002If Quality Assurance
approves this build and agrees to test it, the build is renamed to something more formal,
such as “Project101 Build5’.

A build system shoud be designed to run onascheduled basis, such as every
night, or on demandto include changes. The scripts for the buil d system should be stored
in the SCM system, so that any release can be built at any time.

The product shoud be built often and regularly, rather then just before shipping
(McCarthy, 1995. “The paint of thisruleisto engage the team in bulding the product
frequently, regularly, throughou the development cycle, with the highest possble
quality, andin apubic placewhere dl team members can have accessto it” (Pg. 109.

This all ows everybody to assessthe daily status, and seewhether everything is on
target. Otherwise, na everybody will know how far along development is, and problems
that appea closer to shipping time will postpore the shipping time. If somebody adds
code that breaks this regular build, everybody will natice There will be increased
presaure to commit high quality changes s that the build can complete and be tested.

Brooks (199%) agrees with how McCarthy describes the buil d system at
Microsoft. In his 20" anniversary version o the book “Mythical Man-Month”, he amits
that the Waterfall method of software development iswrong. He describes an

Incremental-Build model, where the system is always running. In the beginning of a
product, asimple framework is started. The ideaisto always have the framework running
without any problems. New components get tied into the framework one at atime. First
versions will be boring and feature incompl ete, but will always run. This has the added
benefit of being able start automated and manual testing early in the design and

development phases, long before it is feature compl ete.

Progressive refinement systems are a much better way of developing than the
waterfall method, where the design, implementation, and testing stages must be
completed consecutively. Projects where an automated building and testing system is not
set up do proceed as smoothly as well as projects where building and testing is
automated... Rather then doing alot of up front planning work, design when design is
needed, and continually add to and repair the working code when necessary.

Appendices

Appendix A: CVS Change Logs
One of the most common revision control systems is the Concurrent Versions

Systems (CV S) software padkage. CVSis an extension d the Revision Control System
(RCS). Below isthe complete log for one of the source @de filesin aweb based email
applicaionthat the author of this paper has worked on Asthe name implies, French.pm

isamodue that handes a French version d the applicaion.

Important portions of the log file below have been highlighted in bdd. The
origina author is‘aane’, but sincethen the user ‘wim’ made dhanges ona @mupe of
occasions. For each change, anew revision nunber is automaticadly assgned, starting at
1.1.Version numbers have been manually assgned to the fil e, which the * symbadlic
names header shows. It appeasthat the ‘acme’ author tagged it as a development
versionin April 2001.

Change logs are away of showing when afile was changed, who changed it, why
they changed it, and what they changed.

RCS file: /cvsroot/acnemail/sparkl e/ Acnemail/Lang/ French. pmv
Working file: French. pm
head: 1.3
| ocks: strict
synbol i ¢ nanes:

Devel -2001_04_27: 1.1
keyword substitution: kv
total revisions: 3; sel ected revisions: 3
revision 1.3
date: 2001/09/05 03:59:53; author: wim state: Exp; lines: +31 -4
Updated the French nodule to reflect all the nunmerous changes nade to
t he English nodul e.
Still need someone who actually knows French to go through and
transl ate, however.

revision 1.2

date: 2001/06/23 04:13:14; author: winy state: Exp; lines: +4 -33
- nmove | anguage eval code to a new nodul e, Acrenmil:: Translator, just
i ke Acnemail :: Milserver does it

- fixed some typos in the English | anguage nodul e

revision 1.1
dat e: 2000/03/05 21:57:18; author: acne; state: Exp;
Added French | anguage files

1C

Appendix B: CVS Changes
Most revision control systems have away of showing exadly what lines were

changed in afile. This can be dore between arbitrary revisions, versions, and cetes. The
change below was generated by the command ‘cvs diff -+ 1.3—+ 1.4README’.
Automaticdly the server retrieves revisions 1.3and 1.4from the repasitory for
comparison. The dange below was caused by somebody adding severa lines. The
‘12a13,19 annaation represents the locaionin the original document that the lines were
added. Lines added and removed are denated with the *>" and ‘<’ symbadls.

| ndex: R EADVE

RCSf ile:/ cvsroot/acnenail/sparkl e/ READMEvV
retrieving revision 1.3

retrieving revision 1.4

diff -r1.3 -rl1.4

12a13, 19

> **| MPORTANT * *

Configurationi snol ongerd onewithAcmenail Conf.pm or MyAcmenuail.pm
buti nsteadwithAc nmemail::Config.A tth emonent,y ouh avetoe ditit
byh and.E ventuallyw e'llg eta ni nstall ationscriptw hichwi Ilh elp
youwritei t.

VVVYVVYV

11

Appendix C: Graphical CVS clients

In addition to the command line based versions of CV'S, there are many graphical
interfaces. The following screenshot shows how the WinCV S program allows a software
programmer to easily see the changes between two revisions of afile. Color highlighting
makes it very apparent what lines have been added, and what lines have been changed.

E® Araxiz Merge - [C:\Tempiclient_1.1.1.2 12.c and C:\Tempiclient 1.1.1.3 13.¢]

Iij:l File Edit View ‘window Help

[

il
N

=fmp=[= e wif4RETE

13555 IE:'\Temp'\client_l'I.'I.2_12.: Ivl IE:\Temp'\cIient_1.1.'|.3_13.: lvl ISE?S
4k
_.A.l 3648 error (0, 0, "dying gasps from % 3658 error (0, 0, "dying gasps from %= ..f..l
3649 else if (ferror (from server_fp)) 3659 else if (ferror (from server_ fpl)
3550 error (0, errno, "reading from %¥s" 3660 error (0, errno, "reading from %s"
3851 ZE6l
IEEE folose tfrom serwver fp); JEEZ foclose tfrom serwver fp);
FEEZ fendif f* SHUTDOUN SERVEDR */ 2E62 fendif f* SHUTDOWM SERVER */
2654 1 ZE64 1
| =ess | FEEE l
2EEG if (rsh pid != -1 ZEGE if (rsh pid != -1
38E7 &4 waitpid (rsh pid, (int *) 0, 0} == 3867 &4 waitpid (rsh pid, {int *) 0, 0} ==
2653 error (1, errno, "waiting for process 66 error (1, errno, "waiting for process i
3853 11
2660 server_ started = 0; 370 server_ started = 0;
FEEL 2871
BEEZ /* see if we need to sleep before returnir 3672 f* see if we need to sleep before returnin
BEEZ if (last_register_time) 3673 if (last_register_time)
- =664 { FET4 { k=
3665 time t now: 3675 time t now;
11 3876
3867 (woid) time (amow) ; e for itan)]
3668 if inow = last vegister time) wlk] ssvs {
3569 sleep il);: R S ESE {wvoid) time {snow);
2670 } o] =ze=0 if tnow '= last register time) b}
3671 \\ . 3681 sleep (1) ik o]
3ETE retburn errs; \l 3682 i3 t}
3673} 3EE3 }
T 2674 3584 2
2| 2675 gifndet NO_EXT METHOD 3685 return errs; -
*| 2676 static woid start rsh serwer PROTO((int *, int 3685 1} b
4 | ¥ 8 3

For Help, press F1 im_ | i

12

Glossary

Artifact
An ojed produced o shaped by human craft, espedaly atod, weapon, o
ornament of archaeological or historicd interest.

Build
The ad or result of assembling separate mwmponentsinto a cmplete deliverable
program.

Branch
Split a projed's development into separate, parallel histories. Changes made on
one branch do not affed the other.

Checkpoint
A place(as at afrontier) where travelers are stopped for inspedion and clearance

CVSs
Concurrent Versions System, the dominant freeand open sourceversions corntrol
system. It is useful for both individual developers and larger distributed teams.

Fix
A fix isasimple term to describe fixes for software defects. See also Patch.

Program
A sequence of instructions that a computer can interpret and exeaute

RCS
The Revision Control System. The father of CV'S, RCS automates the storing,
retrieval, logging, identification, and merging of revisions. RCSis useful for text
that is revised frequently, for example programs, documentation, gaphics, papers,
andform letters.”

Release
A fully constructed version d a software product, that isrealy for use by a
specific audience Releases include the distribution media, documentation, and
training materials. Distribution mediums include CD-ROMs and Internet
downloads. Audiences include end consumers, demo, preview, and testing users.

Repository
A filetreekept onacentral server where things may be put for safekeeping.

Revision
A unique number that is automaticdly assgned to every change to every version

controlled file. Whenever a changeis saved, the revision number is incremented
by one. See also Version.

13

Softwar e Configuration Management
Software Configuration Management is the process of identifying, organizing,
controlling, and tracking both the decomposition and recomposition of software
structure, functionality, evolution, and teamwork. SCM isthe "glue" between
software artifacts, features, changes, and team members; it forms the ties that bind
them all together from concept to delivery and beyond.

Tag
A tag isaunique name given to arevision of afile. The tag can be used instead of
the revision number to access that revision of thefile.

Patch
A patch contains changes made to original source. By using specia tools, these
changes can be automatically applied to the original source so that it includes the
changes.

Version

Anidentifier arbitrarily assigned to a software product by the rel ease engineer.
Typicaly version numbers are assigned and maintained without the aid of a
Software Configuration Management System.

14

References

Bawtreg H. (2001). Beyond version control.
http://www.sdmagazi ne.com/documents/s=731/sdm0105d [2002,Feb. 13

Brooks, F. (1995. The mythical man-month. Boston, MA: Addison-Wesley Publishing
Company.

Brown, W. (1999. AntiPatterns and paternsin software configuration management.
New York, N.Y.: JohnWiley & Sons

Jarvis, A. & Hayes, L. Dareto be excdlent: Case studies of software engineaing
practices that worked. Upper Sadde River, NJ: Prentice-Hall .

Leon, A. (2000. A Guide to Sdtware Configuration Management. Norwood, MA:
Artech House.

Kit, E. (199%). Sdtware testingin the real world. Boston, MA: Addison-Wesley
Publi shing
Company.

McCarthy, J. (1995. Dynamics of software devdopment. Redmond, Washington:
Microsoft Press

McConrell, S. (1993. Code complete. Redmond, Washington: Microsoft Press

Mikkelson T. & Pherigo S. (1997). Practical software configuration management: The
latenight devdoper's handbod. Upper Sadd e River, NJ: Prentice-Hall .

Raymond,E. S. (1999. The athedral andthe bazaar. Sebastopd, California: O’ Reilly
& Associates.

Vance S. (1998). Advanced SCM branching strategies.
http://www.vance.com/steve/perforce/Branching_Strategies.html [2002,Feb. 13

15

